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Abstract

We investigate the convergence of the self-consistent field (SCF) iteration used to solve
a class of nonlinear eigenvalue problems. We show that for the class of problems considered,
the SCF iteration produces a sequence of approximate solutions that contain two convergent
subsequences. These subsequences may converge to two different limit points, neither of
which is the solution to the nonlinear eigenvalue problem. We identify the condition under
which the SCF iteration becomes a contractive fixed point iteration that guarantees its
convergence. This condition is characterized by an upper bound placed on a parameter
that weighs the contribution from the nonlinear component of the eigenvalue problem. We
derive such a bound for the general case as well as for a special case in which the dimension
of the problem is 2.

1 Introduction

We are concerned with the convergence of a numerical method for solving the following type
of nonlinear eigenvalue problem

H(X)X = XΛk, (1)

where X ∈ R
n×k, XT X = Ik, H(X) ∈ R

n×n is a matrix that has a special structure to be
defined below, and Λk ∈ R

k×k is a diagonal matrix consisting of the k smallest eigenvalues of
H(X). This type of problem arise in electronic structure calculations [5]. The nonlinearity
simply refers to the dependency of the matrix H on the eigenvector X to be computed. This
dependency is expressed through a vector ρ(X) that corresponds to the charge density of
electrons in an electronic structure calculation. This vector is defined as

ρ(X) ≡ diag(XXT ), (2)
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where diag(A) denotes the vector containing the diagonal elements of the matrix A.
Given ρ(X), the matrix H(X) that we will consider in this paper is defined as

H(X) = L + αDiag(L−1ρ(X)), (3)

where L is a discrete Laplacian, Diag(x) (with an uppercase D) denotes a diagonal matrix
with x on its diagonal, and α is some known constant. In electronic structure calculations,
H(X) is often referred to as a single-particle Hamiltonian.

The solution of (1) is also a global minimizer of the following constrained minimization
problem

min E(X)
s.t. XT X = Ik,

(4)

where the objective function E(X) is defined by

E(X) =
1

2
trace(XT LX) +

α

4
ρ(X)T L−1ρ(X). (5)

In fact, it is not difficult to show that (1) and the orthonormality constraint XT X = Ik

form the first order necessary conditions for (4).
The nonlinear eigenvalue problem defined in (1) is a simplification of the Hartree-Fock

and Kohn-Sham equations in electronic structure calculations [5]. Although our analysis is
performed on this simplified model, the main results reveal some of the fundamental properties
of this type of problem and how the behavior of the algorithm used to solve this type of problem
changes with respect to the amount of nonlinearity measured by the parameter α in (3).

The numerical method we will analyze is called the self consistent field (SCF) iteration.
It is currently the most widely used algorithm for solving the Hartree-Fock and Kohn-Sham
equations. In each SCF iteration, one computes approximations to a few the smallest eigenval-
ues and the corresponding eigenvectors of a fixed Hamiltonian constructed from the previous
approximation to X; the computed eigenvector approximations are used to update the Hamil-
tonian. When the difference between Hamiltonians constructed in two consecutive iterations
is negligible, the SCF procedure is terminated, and the eigenvectors of the last Hamiltonian
are said to be self-consistent.

It is well known that the simplest version of SCF iteration, which we will carefully describe
in the next section, often fails to converge. For certain types of Hamiltonians (e.g., Hartree-
Fock and the one defined in (3)), the SCF iteration may eventually oscillate between two
limit points, neither of which satisfies (1). The convergence failure of the SCF iteration is
partially explained in [7] by viewing the SCF iteration as an indirect minimization procedure
that seeks the minimum of (4) by minimizing a sequence of quadratic surrogates. Although the
arguments and numerical examples presented in [7] demonstrated that E(X) may not decrease
monotonically in an SCF iteration, they do not reveal the asymptotic convergence behavior of
the SCF iteration.

In this paper, we will take a closer look at the SCF iteration and analyze its convergence
when used to solve (1). A brief overview of the algorithm is given in Section 2 along with a
simple example that illustrates the convergence failure of the SCF iteration for some choices
of α used in (3). In Section 3, we show that when the SCF iteration fails to converge, the
approximate eigenvectors X(i) produced in the SCF iteration contain two subsequences that
converge to two distinct limit points. Neither of these limit points is a solution to (1). Our proof
of this result is similar to an earlier proof given by Cancès and Le Bris in [2]. We made a number
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of simplifications to make it easier to follow. However, the subsequence convergence result does
not give the conditions under which the two subsequences are guaranteed to converge to the
solution of (1). Such a condition is identified in Section 4. We will show that for n = 2, the
SCF iteration is guaranteed to converge when α < 3. For the more general case, our main
result provides an upper bound for α that depends on the minimum gap between the kth and
the k + 1st eigenvalues of H(X), the dimension of the problem, and the norm of L−1.

Throughout this paper, we will use ‖ · ‖p to denote the p-norm [3] of either a vector or a
matrix. The Frobenius norm of a matrix is denoted by ‖ · ‖F .

2 The SCF iteration

In this section, we describe the SCF iteration and show how it fails when it is applied to a
2 × 2 Hamiltonian (3) with a particular choice of α.

The basic idea of an SCF iteration is to reduce the nonlinear eigenvalue problem (1) to a
sequence of linear eigenvalue problems that can be solved efficiently using existing tools. Figure
1 shows the main steps of this procedure. The convergence of the iteration can be monitored by
computing the difference between charge densities ρ(X) obtained in two consecutive iterations.
The following example shows that the simplest version of the SCF iteration fails to converge.

SCF Iteration

Input: A discrete Laplacian L ∈ R
n×n; an initial guess X(0) for the

eigenvector X ∈ R
n×k;

Output: X ∈ R
n×k such that X∗X = Ik and H(X)X = XΛk, where

Λk contains the k smallest eigenvalues of H(X).

1. for i = 1, 2, ... until convergence

2. Construct H(i) = H(X(i−1)) using (3);

3. Compute X(i) such that H(i)X(i) = X(i)Λ(i), and Λ(i)

contains the k smallest eigenvalues of H(i);
4. end for

Figure 1: The SCF iteration

In this example, we set

L =

(
2 −1
−1 2

)

, (6)

α = 12 and k = 1. As a result, X = (x1 x2)
T with x1, x2 ∈ R such that x2

1 + x2
2 = 1, and

ρ(X) = (x2
1 x2

2)
T .

Due to the convexity and symmetry of E(x) (i.e., interchanging x1 and x2 does not change
the problem), the solution to the minimization problem (4), and hence the nonlinear eigenvalue
problem (1), must satisfy x1 = x2 =

√
2/2, or x1 = x2 = −

√
2/2.

However, when the initial guess of the desired eigenvector is chosen to be, for example,

X(0) =

(
0.1389
0.2028

)

, (7)
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the difference between the charge densities computed in two consecutive SCF iterations does
not converge to zero as we can clearly see in Figure 2(a). Furthermore, Figure 2(b) shows that
the ratio between two components of ρ(X(i)) does not converge to 1.
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(a) The change in charge density ∆ρ(i) ≡
‖ρ(X(i+1))− ρ(X(i))‖2 fails to converge to zero.
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2 oscillates
around one, but does not converge to one.

Figure 2: The SCF iteration fails to converge when α = 12 in (3).

If we reduce α to 1, then SCF converges from any starting guess. Figure 3 shows the differ-
ence between charge densities computed in two consecutive SCF iterations decreases rapidly
towards zero in this case when (7) is used as the starting guess.

3 Subsequence convergence in the SCF iteration

When the SCF iteration fails to converge to the solution of (1), it produces a sequence of
approximations {X(i)} that do not become self-consistent as i increases. We have already seen
this phenomenon in Figure 2(a) where we plotted the norm of the change in ρ(X(i)) between
two consecutive SCF iterations. In this case, it is clear that ‖∆ρ(X(i))‖2 does not converge to
zero as i increases.

However, if we examine the subsequence {X(2i−1)} and {X(2i)} (i = 1, 2, ...) produced in
the SCF iteration, we will see that they both converge to subspaces that become self consistent
in every other iteration. Figure (4) shows that both

∆ρ
(i)
odd ≡ ‖ρ(X(2i+1)) − ρ(X(2i−1))‖2 and ∆ρ(i)

even ≡ ‖ρ(X(2i+2)) − ρ(X(2i))‖2

converge to zero as i increase, although neither X(2i+1) nor X(2i+2) becomes a minimizer of
E(X) as we can clearly see in Figure 2(b).

In [1] and [2], Cancès et al. showed that such a phenomenon occurs in a more general
setting, i.e., when SCF fails to converge to the solution of the Hartree-Fock equation, the odd
and even subsequences of the approximations converge to two distinct limit points. Their
analysis, which we will reproduce here with some modification, is based on examining the
convergence of the density matrix D(X) = XXT . It relies on the assumption that there exists
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Figure 3: When α = 1.0, ∆ρ(i) converges rapidly to 0.
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(b) Even iterations

Figure 4: When α = 12, the charge density converge to two different limit points in odd and
even SCF iterations.
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a gap δ between the kth and k + 1st eigenvalues of H(X) for all valid X, an assumption that
is referred to as the uniformly well posed (UWP) property in [1]. Their major result asserts
that

∞∑

i=ℓ

‖D(X(i+2)) − D(X(i))‖2
F < ∞, (8)

for any finite ℓ ≥ 0. Therefore, ‖D(X(i+2)) − D(X(i))‖F must converge to zero as i increases.
In the analysis we present below, the subsequence convergence of the SCF iteration is

measured by the distance between two subspaces spanned by columns of X ∈ R
n×k and

Y ∈ R
n×k. We will use the standard distance measure defined in [3, p. 76, Theorem 2.6.1].

i.e., if XT X = Y T Y = Ik,
dist(X,Y ) ≡ ‖ZT Y ‖2, (9)

where Z ∈ R
n×(n−k) is the orthogonal complement to X and ZT Z = In−k.

The following lemma shows that dist(X,Y ) can, in general, be bounded in terms of
trace(Y T HY ) − trace(XT HX) and the gap between the kth and k + 1st eigenvalues of H,
if columns of X consist of eigenvectors associated with the k smallest eigenvalues of H and
Y ∈ R

n×k satisfies Y T Y = Ik.

Lemma 1 Let λ1 ≤ λ2 ≤ · · · ≤ λn be eigenvalues of a symmetric matrix H ∈ R
n×n, and

columns of X be eigenvectors associated with λ1, λ2, . . . , λk. If λk+1 = λk + δ for some δ > 0,
then

dist2(X,Y ) ≤ trace(Y T HY ) − trace(XT HX)

δ
(10)

for any Y ∈ R
n×k such that Y T Y = Ik.

Proof: Let columns Z ∈ R
n×(n−k) be eigenvectors associated with λk+1, λk+2, . . . , λn, and

define Λk = Diag(λ1, λ2, . . . , λk) and Λn−k = Diag(λk+1, λk+2, . . . , λn). It follows from the
spectral decomposition of H that

trace(Y T HY ) = trace[(Y T X)Λk(XT Y )] + trace[(Y T Z)Λn−k(Z
T Y )].

Since λk+1 = λk + δ, we have λi ≥ λk + δ for i ≥ k + 1. Thus,

trace

[

(Y T Z)Λn−k(Z
T Y )

]

≥ (λk + δ)‖ZT Y ‖2
F .

Consequently,

trace(Y T HY ) ≥ trace

[

(Y T X)Λk(X
T Y )

]

+ λk‖ZT Y ‖2
F + δ‖ZT Y ‖2

F . (11)

Because W = (X,Z) defines an orthogonal transformation

‖W T Y ‖2
F = ‖Y ‖2

F = k.

Hence
‖ZT Y ‖2

F = ‖W T Y ‖2
F − ‖XT Y ‖2

F = k − ‖XT Y ‖2
F . (12)
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Substituting (12) into (11) and setting S = XT Y yields

trace(Y T HY ) ≥ trace(SΛkS
T ) + λk(k − ‖S‖2

F ) + δ‖ZT Y ‖2
F

= λkk + trace

[

S(Λk − λkI)ST

]

+ δ‖ZT Y ‖2
F

= trace(Λk) + trace(λkI − Λk) + trace

[

(Λk − λkI)SST

]

+ δ‖ZT Y ‖2
F

= trace(XT HX) + trace

[

(λkI − Λk)(I − SST )

]

+ δ‖ZT Y ‖2
F .

Because XT X = Y T Y = Ik, the diagonal elements of SST are all less than or equal to one.
Hence

trace

[

(λkI − Λk)(I − SST )

]

≥ 0.

Therefore, we can now conclude that

trace(Y T HY ) ≥ trace(XT HX) + δ‖ZT Y ‖2
F

≥ trace(XT HX) + δ‖ZT Y ‖2
2

= trace(XT HX) + δdist2(X,Y ).

Rearranging terms in the above inequality yields (10). �

Our analysis of the subsequence convergence will make use of the following auxiliary func-
tion

Ê(X,Y ) = trace(XT LX) + trace(Y T LY ) + αρ(X)T L−1ρ(Y ). (13)

This function is similar to the one used in [1] which is defined in terms of density matrices
D(X) and D(Y ).

It is easy to verify that

ρ(X)T L−1ρ(Y ) = trace(XT Diag[L−1ρ(Y )]X) = trace(Y T Diag[L−1ρ(X)]Y ).

Thus, Ê(X,Y ) is clearly symmetric, i.e., Ê(X,Y ) = Ê(Y,X), and it can be expressed alterna-
tively as

Ê(X,Y ) = trace(XT H(Y )X) + trace(Y T LY )

= trace(Y T H(X)Y ) + trace(XT LX). (14)

We are now ready to show the main result which we state formally in the following theorem.

Theorem 1 Let X(0) ∈ R
n×k be the initial guess to the solution of the nonlinear eigenvalue

problem (1) that satisfies X(0)T X(0) = Ik. If columns of X(i) ∈ R
n×k contain eigenvectors

associated with the smallest k eigenvalues of H(X(i−1)), as we would obtain when applying the
SCF iteration to (1), and if the gap between the kth and the k + 1st eigenvalues of H(X(i)) is
greater than or equal to δ > 0 for all i, then

m∑

i=0

dist2(X(i+2),X(i)) ≤ Ê(X(0),X(1)) − Ê(X(m+1),X(m+2))

δ
(15)

where Ê(·, ·) is the auxiliary function defined in (13).
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Proof: To simplify notation, we will denote H(X(i+1)) by H. Because X(i+2) contains eigen-
vectors associated with the smallest k eigenvalues of H, it follows from Lemma 1 that

trace(X(i+2)T HX(i+2)) + δdist2(X(i+2),X(i)) ≤ trace(X(i)T HX(i)).

Adding trace(X(i+1)T LX(i+1)) to both sides of the inequality above and invoking (14) yields

Ê(X(i+1),X(i+2)) + δdist2(X(i+2),X(i)) ≤ Ê(X(i),X(i+1)).

Rearranging terms in the above inequality yields

dist2(X(i+2),X(i)) ≤ Ê(X(i),X(i+1)) − Ê(X(i+1),X(i+2))

δ
.

Summing over i yields the inequality (15). �

Because Ê(X(m+1),X(m+2)) can be bounded by a constant for any m, and the left hand
side of (15) is an increasing series, dist(X(i+2),X(i)) must converge to zero as i → ∞.

4 The Convergence of SCF

Although the subsequence convergence analysis characterizes what would happen when the
SCF iteration fails to converge, it does not give the conditions under which both the even and
odd subsequences are guaranteed to converge to the solution of (1). On the other hand, the
numerical examples presented in Section 2 appear to indicate that the convergence of SCF for
the 2 × 2 problem depends on the value of α which weighs the contribution of the nonlinear
term Diag(L−1ρ(X)) in the Hamiltonian (3). In this section, we will provide a formal proof
that this is indeed true. We will prove that the SCF iteration is guaranteed to converge to the
solution of (1) from any starting point when α < αmax for some upper bound αmax.

Before we state and derive a general bound for α, we will first examine the convergence of
the 2 × 2 problem shown in Section 2 because this problem is relatively easy to analyze and
because we can obtain a much tighter upper bound on α in this special case.

In Section 4.2, we will use a more sophisticated technique to derive an upper bound for α
that is more general but somewhat pessimistic.

4.1 The 2 × 2 case

Before we get to the main result, we will first show that the ratio between the two components
of the charge density oscillates around 1 regardless the choice of α. We will later show that
the magnitude of the oscillation decreases to zero when α is sufficiently small.

Lemma 2 Let y = (y1 y2)
T be the eigenvector associated with the smallest eigenvalue of

H(X) defined in (3), where X = (x1 x2)
T with |x1| > |x2|. If α > 0 in (3), then |y2| > |y1|.

Proof: It is straightforward to write down the inverse of L defined in (6) and show that

L−1ρ(X) =
1

3

(
2x2

1 + x2
2

x2
1 + 2x2

2

)

Consequently, the two diagonal elements in the second term of H(X) in (3) are simply

β1 =
α

3
(2x2

1 + x2
2), and β2 =

α

3
(x2

1 + 2x2
2). (16)
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Suppose λ is an eigenvalue of H(X), then

det

(
2 + β1 − λ −1

−1 2 + β2 − λ

)

= (2 + β1 − λ)(2 + β2 − λ) − 1 = 0. (17)

If we let φ(λ) = (2 + β1 − λ)(2 + β2 − λ), then eigenvalues of H are solutions to the equation
φ(λ) = 1.

It is easy to see from (16) that

β1 − β2 =
α

3
(x2

1 − x2
2) > 0, (18)

since |x1| > |x2|. Therefore, the two eigenvalues of H(X), which are distinct roots of the
quadratic equation φ(λ) = 1, must satisfy

λ1 < 2 + β2 < 2 + β1 < λ2. (19)

Let y = (y1 y2)
T be the eigenvector associated with λ1. It follows from H(X)y = λ1y that

(2 + β1 − λ1)y1 = y2. (20)

Because (19) implies 0 < 2 + β2 − λ1 < 2 + β1 − λ1, it follows from (17) that

2 + β1 − λ1 > 1.

Consequently, we can deduce from (20) that |y2| > |y1| > 0. �

Lemma 3 confirms the observation we made in Figure 2(b), namely, the ratio between the
first and second component of ρ oscillates around 1 in the SCF iteration. The convergence of
x1 and x2 to the optimal solution can be easily proved if we can show that

|y2|
|y1|

<
|x1|
|x2|

, when |x1| > |x2|, (21)

or
|y1|
|y2|

<
|x2|
|x1|

, when |x2| > |x1|. (22)

Without loss of generality, we will establish the condition under which (21) holds.
Before we do that, let us first express y2/y1 as a function of β1 − β2.

Lemma 3 If β1 and β2 are defined by (16), then

y2

y1
=

(β1 − β2) +
√

(β1 − β2)2 + 4

2
, (23)

where y = (y1, y2)
T is the eigenvector associated with the smallest eigenvalue of H(X).

Proof: Let δ = y2/y1 = 2 + β1 − λ1. It is easy to show that

2 + β2 − λ1 = δ − (β1 − β2).

Hence, it follows from (17) that

δ2 − (β1 − β2)δ − 1 = 0. (24)
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Solving (24) for δ and taking the positive root yields (23). �

Note that if x1 = x2 =
√

2/2, then β1 − β2 = 0. In this case, it follows from (23) that
y2/y1 = 1, which matches our intuitive expectation that the SCF iteration should converge
right away when the initial guess is the solution to (1).

The following theorem establishes the condition that guarantees the monotonic convergence
of the SCF iteration when the initial guess is not the solution to (1).

Theorem 2 Let X = (x1 x2)
T be an initial guess of the solution to (1), where H(X) is defined

by (3), and (y1 y2)
T be the eigenvector associated with the smallest eigenvalue of H(X). If

|x1| > |x2|, then
∣
∣
∣
∣

y2

y1

∣
∣
∣
∣
<

∣
∣
∣
∣

x1

x2

∣
∣
∣
∣
, (25)

when the parameter α in (3) satisfies

0 < α ≤ 3. (26)

Proof: Applying the inequality
√

(β1 − β2)2 + 4 ≤ (β1 − β2) + 2 to (23) yields

y2

y1
≤ β1 − β2 + 1.

If |x1| = 1 and x2 = 0, then |y2/y1| < ∞ = |x1/x2| for any choice of α > 0. Thus (25)
certainly holds when α satisfies (26).

If x2 6= 0, it follows from (18) that

y2

y1
− 1 ≤ α

3
(x2

1 − x2
2)

=
α

3
(|x1| − |x2|)(|x1| + |x2|)

=
α

3

[

|x2|(|x1| + |x2|)
](∣

∣
∣
∣

x1

x2

∣
∣
∣
∣
− 1

)

≤ α

3

(
x2

1 + x2
2

2
+ x2

2

)(∣
∣
∣
∣

x1

x2

∣
∣
∣
∣
− 1

)

=
α

6
(1 + 2x2

2)

(∣
∣
∣
∣

x1

x2

∣
∣
∣
∣
− 1

)

.

Since x2
1 + x2

2 = 1 and |x1| > |x2|, x2
2 must be less than 1/2. Consequently,

y2

y1
− 1 <

α

3

(∣
∣
∣
∣

x1

x2

∣
∣
∣
∣
− 1

)

.

Thus (25) holds if α ≤ 3. �

The upper bound for α established in Theorem 2 is slightly pessimistic because our exper-
iments show that the SCF iteration converges for α as large as 6.0. However, it is not terribly
loose because our experiments also show that convergence failure occurs when α = 6.5.
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4.2 The more general case

Our analysis of the SCF iteration for the 2×2 problem relies heavily on the symmetry property
of the problem and the fact that the solution to the nonlinear eigenvalue problem satisfies
|x1| = |x2|. It is difficult to apply this approach to the more general case in which n > 2 and
k > 1.

Instead of tracking how eigenvectors of H(X) vary from one iteration to another, we will
focus in this section on the change in charge density ρ(X). We will use a technique developed
in [6] to characterize the mapping between the input charge density used to construct H(X)
in (3) and the output charge density obtained directly from the desired eigenvectors of H(X)
via (2). We will show that under certain conditions this mapping becomes a contraction when
α < αmax for some αmax that depends on the minimum gap between the kth and the k + 1st
eigenvalues of H(X), the norm of L−1 and the problem size n.

We will again assume that there is a gap between and the kth and the k + 1st eigenvalues
of H(X) for all X ∈ R

n×k that satisfies XT X = Ik, and this gap is larger than some lower
bound δ > 0. (This is the uniformly well-posed condition defined in [1]). The significance of
this gap will become clear in the following.

Suppose the eigenvalues of H(X) are

λ1 ≤ λ2 ≤ · · · ≤ λk < λk+1 ≤ · · · ≤ λn,

for a given X that satisfies XT X = Ik, and the corresponding eigenvectors are y1, y2, ..., yn.
By definition, the density matrix associated with Y = (y1, y2, ..., yk) is

D(Y ) = Y Y T .

An alternative way to represent this density matrix is

D = ZΩZT ,

where Z = (y1, y2, ..., yn) and Ω = Diag(1, 1, ..., 1
︸ ︷︷ ︸

k

, 0, ..., 0).

Because λk < λk+1, we can construct a filter function φ(λ) that satisfies

φ(λ) =

{
1, for λ = λ1, λ2, ..., λk,
0, for λ = λk+1, λk+2, ..., λn.

(27)

If φ(λ) is continuous and differentiable, then we can represent the charge density, which is
normally defined as,

ρ(Y ) = diag(D(Y )), (28)

in yet another form, i.e.
ρ = diag(φ(H)).

If H is constructed from the charge density ρin, then

ρout = diag

[

φ(H(ρin))

]

,

defines a mapping η from ρin to ρout, and this is the mapping implicitly constructed at each
SCF iteration.

11



We would like to identify the condition under which η becomes a contraction. Such a
condition will ensure that the SCF iteration converges to a fixed point of η that is the solution
to our nonlinear eigenvalue problem.

To seek such a condition, we will show that

‖η(ρ1) − η(ρ2)‖1 < γ‖ρ1 − ρ2‖1, (29)

for any ρ1 and ρ2 that satisfy the standard definition (2), and identify the requirement under
which γ < 1.

Constructing a proper filter function is the key to proving (29). We will choose φ(t) to be
a Fermi-Dirac distribution [4] of the form

φ(t) = fµ(t) =
1

1 + eβ(t−µ)
, (30)

where µ is implicitly determined by the input matrix argument to φ(t) and β > 0 is a constant.
To be specific, µ is the solution of the equation

trace(φ(H)) = trace(fµ(H)) = k. (31)

Because
∑n

i=1 fµ(λi) is monotonic with respect to µ for a fixed β, the solution to (31) is unique
for any choice of β and H. Figure 5 shows how Fermi-Dirac distributions look with different β
values and µ = 0. Notice that a larger β value leads to a sharper drop-off of φ(t) from 1 to 0.

−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

t

f 0
(t

)

 

 

β = 10
β=100

Figure 5: Fermi-Dirac distribution fµ(t) = 1
1+eβ(t−µ) , for µ = 0

If the uniformly well posed condition holds, then there exists a constant β sufficiently large
so that (27) is fulfilled in a finite precision arithmetic.

Let H1 and H2 be Hamiltonians constructed from the charge densities ρ1 and ρ2 respec-
tively. It is easy to see that

∥
∥
∥
∥
η(ρ1) − η(ρ2)

∥
∥
∥
∥

1

=

∥
∥
∥
∥
diag

[

fµ1(H1)

]

− diag

[

fµ2(H2)

]∥
∥
∥
∥

1

≤
∥
∥
∥
∥
diag

[

fµ1(H1) − fµ2(H1)

]∥
∥
∥
∥

1

+

∥
∥
∥
∥
diag

[

fµ2(H1) − fµ2(H2)

]∥
∥
∥
∥

1

. (32)
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Without loss of generality, let us assume µ1 ≥ µ2. As a result, fµ1(t) ≥ fµ2(t) for any t.
Hence

∥
∥
∥
∥
diag

[

fµ1(H1) − fµ2(H1)

]∥
∥
∥
∥

1

= trace

[

fµ1(H1) − fµ2(H1)

]

= trace

[

fµ1(H1)

]

− trace

[

fµ2(H1)

]

. (33)

Since trace[fµ1(H1)] = trace[fµ2(H2)] = k, it is easy to see that

trace

[

fµ1(H1)

]

− trace

[

fµ2(H1)

]

= trace

[

fµ2(H2)

]

− trace

[

fµ2(H1)

]

= trace

[

fµ2(H2) − fµ2(H1)

]

≤
∥
∥
∥
∥
diag

[

fµ2(H2) − fµ2(H1)

]∥
∥
∥
∥

1

. (34)

Consequently, it follows from (32), (33) and (34) that

∥
∥
∥
∥
η(ρ1) − η(ρ2)

∥
∥
∥
∥

1

≤ 2

∥
∥
∥
∥
diag

[

fµ2(H2) − fµ2(H1)

]∥
∥
∥
∥

1

≤ 2n

∥
∥
∥
∥
fµ2(H2) − fµ2(H1)

∥
∥
∥
∥

1

(35)

Now to show (29) and to derive an upper bound for α, all we need to do is to show that

∥
∥
∥
∥
fµ2(H2) − fµ2(H1)

∥
∥
∥
∥

1

<
γ

2n
‖ρ1 − ρ2‖1,

for some γ that is proportional to α. Before we do that, we will first prove the following lemma
which allows us to establish a desirable relationship between fµ2(H2)− fµ2(H1) and H2 −H1.

Lemma 4 Let A,B ∈ R
n×n be two symmetric matrices, fµ(t) be the Fermi-Dirac distribution

defined in (30). Suppose A = VADAV T
A , and B = VBDBV T

B are the spectral decompositions of
A and B respectively, i.e. V T

A VA = V T
B VB = I, and

DA =








λA
1

λA
2

. . .

λA
n








, DB =








λB
1

λB
2

. . .

λB
n








,

then the identity
f(A) − f(B) = VA(C ⊙ ∆)V T

B

holds, where ∆ = V T
A (A − B)VB, the (j, k)th entry of the matrix C is defined by

Cj,k =







f(λA
j )−f(λB

k )

λA
j −λB

k

if λA
j 6= λB

k

−β if λA
j = λB

k ,
(36)
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and C ⊙ ∆ denotes the Hadamard product of C and ∆.
Proof: It follows from the matrix version of the Cauchy integral formula [3] that

f(A) − f(B) =
1

2πi

∮

Γ
f(z)

[

(zI − A)−1 − (zI − B)−1

]

dz, (37)

where Γ is a closed contour that contains the spectra of both A and B.
Using the identity

(zI − A)−1 − (zI − B)−1 = (zI − A)−1(A − B)(zI − B)−1,

we can express the right hand side of (37) as

1

2πi

∮

Γ
f(z)VA(zI − DA)−1V T

A (A − B)VB(zI − DB)−1V T
B dz.

=
1

2πi

∮

Γ
f(z)VA

[

(wA(z)wB(z)T ) ⊙ ∆

]

V T
B dz, (38)

where wA = diag[(zI − DA)−1], wB = diag[(zI − DB)−1].
Since the only term in (38) that contains z is wA(z)wB(z)T , it follows that

f(A) − f(B) = VA

[(
1

2πi

∮

Γ
f(z)wA(z)wB(z)T dz

)

⊙ ∆

]

V T
B .

Let

C =
1

2πi

∮

Γ
f(z)wA(z)wB(z)T dz.

It is easy to verify that the (j, k)th entry of C can be expressed as

Cj,k =
1

2πi

∮

Γ

f(z)

(z − λA
j )(z − λB

k )
dz

=
1

2πi

1

λA
j − λB

k

∮

Γ

(
f(z)

z − λA
j

− f(z)

z − λB
k

)

dz

Invoking the scalar version of the Cauchy integral formula, we then obtain

Cj,k =







f(λA
j )−f(λB

k )

λA
j −λB

k

if λA
j 6= λB

k

−β if λA
j = λB

k .

�

Suppose H1 = X1Λ1X
T
1 and H2 = X2Λ2X

T
2 be the spectral decomposition of H1 and H2.

A direct application of Lemma 4 to H1 and H2 yields

‖fµ2(H2) − fµ2(H1)‖1 =

∥
∥
∥
∥
XT

2

[

C ⊙ (XT
2 (H2 − H1)X1)

]

XT
1

∥
∥
∥
∥

1

≤ n‖C ⊙ (XT
2 (H2 − H1)X1)‖1

≤ n2‖C‖1‖H2 − H1‖1

≤ αn2‖C‖1‖L−1‖1‖ρ2 − ρ1‖1. (39)
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To establish an upper bound for ‖C‖1, we can use the Mean Value theorem and the fact that

|f ′
µ(t)| =

∣
∣
∣
∣

βeβ(t−µ)

(1 + eβ(t−µ))2

∣
∣
∣
∣
≤ β

to first show that
max
j,k

|Cj,k| ≤ β.

It follows immediately that
‖C‖1 ≤ nβ. (40)

Combining (35), (39) and (40), we obtain

‖η(ρ2) − η(ρ1)‖1 ≤ 2αn4β‖L−1‖1‖ρ2 − ρ1‖1. (41)

We can easily see that η is a contraction if α satisfies

α <
1

2n4β‖L−1‖1
. (42)

It may seem surprising that the upper bound that ensures η(ρ) to become a contraction
depends on a parameter β that is neither present in the original eigenvalue problem (1) nor
in the description of the SCF iteration. However, if we go back to Figure 5 and recall that
the choice of β is dictated by the smallest gap between λk(H) and λk+1(H) for all valid H
matrices, then it becomes clear that the dependency of (42) on β simply says that for problems
in which the gap between λk(H) and λk+1(H) is small, a smaller upper bound of α is required
to ensure that the SCF iteration converges from any starting point.

We should point out that the bound established in (42) is pessimistic. In particular, the
n4 factor on the denominator, which is introduced by the use of a loose inequality in (35)
and the use of 1-norms to bound the norms of the orthogonal matrices X1 and X2 in (39), is
rather conservative. In our numerical experiments, we observed that the SCF iteration may
converge for α values that are much larger than the right hand side of (42). However, the
qualitative behavior of the SCF iteration is correctly characterized by (42). Table 1 shows
both the experimentally observed largest α values (α1) for which the SCF iteration converges
as well as the experimentally observed smallest α values (α2) for which the SCF iteration fails
to converge for problems with different choices of n and k. The optimal bound lies within the
interval (α1, α2). We can clearly see that the optimal bound for α decreases as n increases.
For the same value of n, changing the value of k in Table 1 results in a change of the gap
λk+1 − λk. For each combination of n and k, the smallest gap among various choices of α’s
we experimented with is shown in Table 1. The last two rows of Table 1 clearly indicate that
for the same n, a smaller λk+1 − λk, which corresponds to a larger β value in (42), leads to a
more restrictive choice of α for which the SCF iteration is guaranteed to converge.

In general, the minimum gap between λk(H) and λk+1(H) is not known a priori. However,
when α is sufficiently small, we can estimate such a gap by calculating the difference between
the kth and k +1st eigenvalues of L. Such an estimate can in turn be used to derive a suitable
β value that would allow (30) to achieve the filtering effect (27) in a finite precision arithmetic.

15



n k λk+1 − λk ‖L−1‖1 α1 α2

2 1 2.0 1.0 6.0 6.5

10 2 0.37 15.0 0.8 0.9

100 10 0.02 1275.0 0.05 0.06

100 4 0.0087 1275.0 0.002 0.0025

Table 1: Observation from numerical experiments performed to determine the optimal bound
for α. In these experiments, the L matrix in (3) is constructed as the one-dimensional discrete
Laplacian with 2 on the diagonal and -1 on the sub- and sup-diagonals. The dimension of the
matrix is n. We look for k smallest eigenvalues and the corresponding eigenvectors. The SCF
iteration converges for α ≤ α1, and fails to converge for α ≥ α2. This implies that the optimal
bound for α lies in (α1, α2). The spectral gap λk+1 − λk listed here is smallest among all gaps
associated with different choices of α values we experimented with. These gaps were computed
using a trust-region enabled SCF iteration discussed in [7].

5 Concluding Remarks

We examined the convergence of the SCF iteration used to solve a class of nonlinear eigenvalue
problems defined in (1). Our analysis shows that for this type of problem the SCF iteration
produces a sequence of approximate solutions X(i) that contain two convergent subsequences.
However, the limit points associated with these convergent subsequences may be different as
we demonstrated by a numerical example. We identified the condition under which the SCF
iteration becomes a contractive fixed point iteration that will converge to the solution of the
nonlinear eigenvalue problem. Our main result suggests that this condition can be charac-
terized by an upper bound placed on the parameter α in (1). In the most general case, the
upper bound we derived characterizes the qualitative behavior of the SCF iteration although
the bound itself is somewhat pessimistic. When the dimension of the problem is 2× 2, we can
give a much tighter bound using a completely different technique.
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